IBIS and Power Delivery Systems

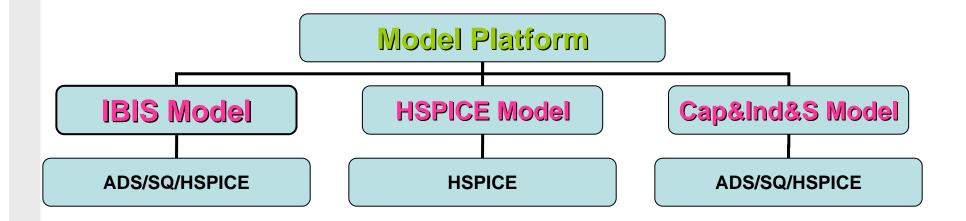
Jiang, Xiangzhong Li, Jinjun Zhang, Shengli

Huawei Technologies, China

Content

- 1. IBIS history in Huawei
- 2. Model Platform in Huawei
- 3. IBIS Validation
- 4. HUAWEI spice circuit model library
- 5. HUAWEI Simulation platform of power integrity
- 6. Conclusion
- 7. Reference

IBIS history in Huawei


➤ A accurate Simulate Model is first element of successful SI, and the difficult step.

•1999	SI dept. founded
•2000	Test board and simulate arithmetic study
•2001	Mr. Bob Ross visit Huawei and lecture; IBIS Membership
•2001	Modeling Group foundedTrack Industry Model development
•2003	lbischk4 fund
•Now	Asian IBIS Summit 2005

2. Model Platform in Huawei

➤ Total simulation Model solution

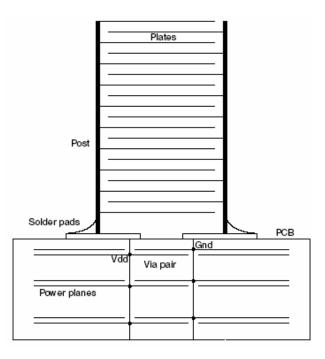
3. IBIS Validation

>Ibischk3

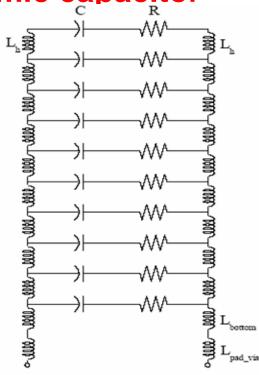
- ◆Syntax Errors and Warnings
- **♦**Common Errors and Warnings
- Structural Errors and Warnings
- ◆Non-monotonicity Warnings
- ◆Extraction Errors and Warnings

3. IBIS Validation

- ➤ IBIS file check(correct&Completeness,Databook)
- **♦IBIS** Properties
- **♦**Component Properties [pin]list
- **♦**Package&pin Properties
- •C_pin L_pin R_pin;
- **♦**Model_type
- •C_comp
- •[Voltage Range]
- •Vinh,Vinl
- •Vmeas Vref Rref Cref
- Max/Min Data condition
- •VI Properties
- •VT Properties


3. IBIS Validation

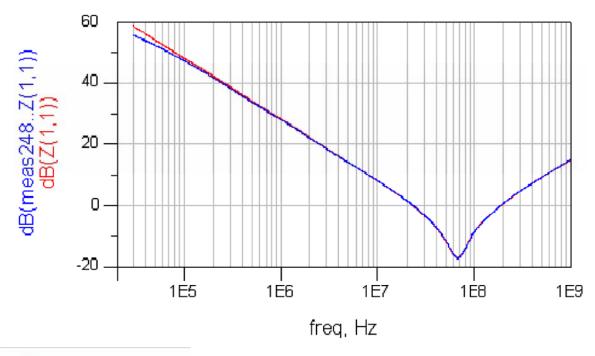
- **≻**Simulate
- **♦** Spice Correlation
- ◆ Voltage Swings[high/low,over]
- **◆**Timing Test Load Response


➤ Measure

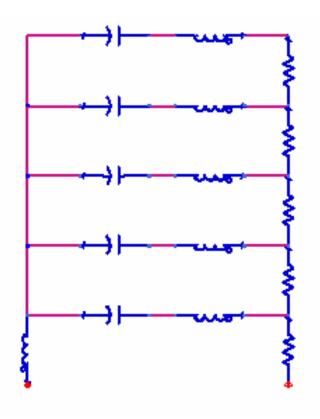
> Distributed circuit model of ceramic capacitor

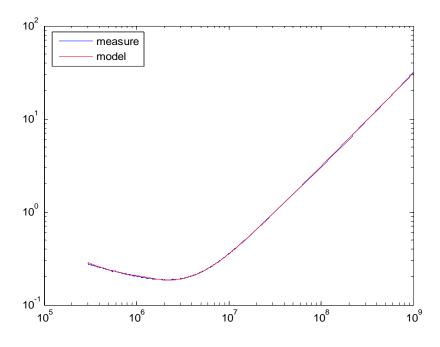
Cross section of discrete capacitor mounted on PCB power planes

Distributed circuit model for SPICE derived from construction of ceramic capacitor


➤ Element values model was extracted from measured sparameter based on Monte Carlo method

The spice netlist of 0.01uF ceramic capacitor


```
.subckt C 08070247 1 5
+ esr=lm loopInductance=ln
lloop 1 2 loopInductance
L11 2
                За
                        4.241151e-010 h
C11 3a
                32a
                        8.785720e-010 f
R11 32a
                                7.684703e-001 ohm
Lrl 4a
                3
                        4.241151e-010 h
L12 3a
                5a
                        1.439540e-011 h
CZ
                    31a
                                 8.785720e-010 f
     31a
R2
                         7.684703e-001 ohm
                        1.439540e-011 h
L13
                        1.439540e-011 h
                        8.785720e-010 f
                        7.684703e-001 ohm
                        1.439540e-011 h
L14
                            1.439540e-011 h
C4
                299
                        8 785720e-010 f
R4
                10a
                        7.684703e-001 ohm
Lr4
    10a
                        1.439540e-011 h
L15
               11a
                        1.439540e-011 h
                288
                        8.785720e-010 f
     289
                12a
                        7.684703e-001 ohm
                10a
                        1.439540e-011 h
                13a
                        1.439540e-011 h
     13a
                        8.785720e-010 f
               14a
                       7.684703e-001 ohm
Lr6
    14a
                12a
                        1.439540e-011 h
    13a
               15a
1.17
                       1.439540e-011 h
                        8.785720e-010 f
               16a
                       7.684703e-001 ohm
    16a
               14a
                       1.439540e-011 h
                       1.439540e-011 h
   15a
                        8.785720e-010 f
                        7.684703e-001 ohm
Lr8 18a
               16a
                       1.439540e-011 h
L19 17a
               19a
                       1.439540e-011 h
C9
    19a
               749
                        8.785720e-010 f
               20a
                        7.684703e-001 ohm
D9
     24a
Lr9 20a
               18a
                        1.439540e-011 h
L110 19a
               21a
                        1.439540e-011 h
C10 21a
                238
                        8.785720e-010 f
RIO
     23a
                22a
                        7.684703e-001 ohm
Lr10 22a
                20a
                        1.439540e-011 h
rl 3 4 esr // esr in ohms
rdum 2 3 10Meg // resistor to make dc path
vsense 4 5 0 ac=0
.ends C_08070247
```


➤ Distributed circuit model simulation compared to measured 0.01uF capacitor

≻Spice circuit model of 10uF Tantalum capacitor

➤The spice netlist of 10uF Tantalum capacitor

```
.subckt C 08020059 1 5
+ esr=lm loopInductance=ln
lloop 1 2 loopInductance // loop or mounted inductance in henries cl 2 la capacitance
                     1.328655e-009 h
Cl 3a
             32a
                    2.090239e-006 f
L1 32a
                    4.893012e-010 h
    4a
                    2.133079e-001 ohm
C2 3a
             31a 3.609295e-006 f
             6a 1.015527e-009 h
L2 31a
R2 6a
                     3.549960e-001 ohm
   3a
             30a 1.426664e-007 f
L3 30a
                     1.952736e-009 h
R3 8a
                     8.641232e-001 ohm
C4 3a
             29a 5.113291e-007 f
L4 29a
           10a 8.165504e-010 h
R4 10a
                    7.889731e-001 ohm
C5 3a
           28a
                     1.839965e-007 f
L5 28a
             12a
                     6.076517e-010 h
R5 12a
             10a
                     1.088326e+000 ohm
rl 3 4 esr // esr in ohms
rdum 2 3 10Meg // resistor to make dc path
vsense 4 5 0 ac=0
.ends C 08020059
```

Element values model was extracted from measured s-parameter based on Monte Carlo method

HUAWEI TECHNOLOGIES

5. HUAWEI Simulation platform of power integrity

Cadence SQPI based two-dimension transmission line theory

S-parameter:

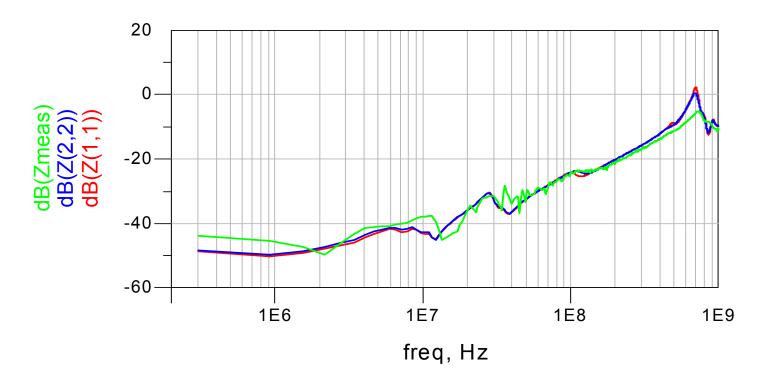
Spice model: high-efficiently

Ansoft Siwave Based electromagnetic theory
 S-parameter

5. HUAWEI Simulation platform of power integrity

≻Simulation of Power integrity for one product

Total pins: 13022 pins


Stackup: 12 layers

Power consumption: 3.3VX20A

HUAWEI TECHNOLOGIES

5. HUAWEI Simulation platform of power integrity

>Simulated and measured impedance of power network for the product

Red: s-parameter; Blue: spice mode; Green: measurement

6. Conclusion

- •HUAWEI have Validated IBIS model Library.
- •HUAWEI hold completed and accurate spice model library of passive component;
- •Simulation platform of power integrity based on spice model library has been founded;
- •The simulated impedance proved to be consistent with measurement and can be used to solve the power noise problem of product.

7. Reference

- 1. Stephen Peters, "I/O BUFFER MODELING COOKBOOK", Intel, 1997
- 2. Bob Ross, "Inspecting IBIS Models", Mentor Graphics, 1998
- 3. Roy Leventhal, "How to Use the IBIS Model", 3COM, 1999
- 4. 3COM, "3COM IBIS MODEL STANDARD", 3COM, 1999
- 5. Syed B.Huq, "Effective Signal Integrity Analysis using IBIS Models", Cisco Systems, 2000
- 6. Arpad.muranyi, "Introduction to IBIS models", intel, 2000
- 7. IBIS Forum, "ibis_quality_checklist", 2002
- 8. Eckhard Lenski, "IBIS-models today, their patameters and their accuracy", Siemens AG,2002
- 9. Barry Katz, "IBIS Quality Committee Report", Sisoft, 2002

